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absTraCT

The goal of neural coding research is to understand how the brain 
uses adaptive neural signals to represent and transmit information. 
This review surveys recent evidence concerning the nature of rep-
resentation implemented by neural circuits. We contrast rate coding 
with different forms of temporal codes, arguing that at the level 
of a single neuron, this dichotomy is a simple problem of demon-
strating the optimal window size for integration that could carry 
the behaviorally relevant information. Also, we draw on examples 
from vision and from other systems to illustrate how information 
may be coded hierarchically along a pathway. More-over, we stress 
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the importance of higher-order interactions, such as the relative 
timing of first-spike latencies from ensembles of neurons, which 
gives the cortex a potentially large immense representational capac-
ity. Evidence derived from coupling massive multirecording tech-
niques and 3D real-time voltage and/or magnetic imaging should 
yield enough information to reveal a more realistic picture of neural 
codes and network interactions. (Cogn Critique 1: 1-30, 2008)

iNTroduCTioN

To respond adaptively, the organism constructs dynamic neuronal 
representations embodied in some sort of inner format that facili-
tates the selection of behavior. A representation is a message that 
uses neural states or processes, defined by two principal and over-
lapping characteristics: content and function. Content is the message 
that a representation carries, for example, what the signal signifies 
about a sensory input; thereby the modality within which sensation 
is experienced carries information about the nature of the stimulus 
as a labeled line. Thus, information could be defined as a message 
transmitted and usually transformed between receivers. Function 
is the effect that the signal can have on cognitive processes and 
the resultant behavior. Therefore, the signal must have a statisti-
cal relation to both the input and the output; consequently not all 
signals involve causal representations temporally coupled with the 
ongoing process measured (deCharms and Zador 2000; Eagleman 
and Churchland, in press). Although there are various candidate 
vehicles of representation, discrete pulse events, known as action 
potentials or spikes in individual neurons, are an initial plausible 
candidate, given that spikes can be configured in a vast repertoire 
of patterns (Fig. 1).

 Neurons use significant amounts of energy (3.9 x 1020 ATP. 
min-1) to support ionic movements associated with these spikes 
(Lennie 2003). Neurons have the remarkable property to propagate 
these action potentials, which can travel down nerve fibers in an 
all-or-none fashion. For a given neuron, the amplitude and dura-
tion of a single spike are quite constant, and its response resembles 
the binary code used in computer science. Therefore, information is 
carried through the temporal succession of action potentials from a 
neuron, not through their magnitude or duration. However, how can 
we be certain that these action potentials can represent behavioral 
information? There are two main approaches to test the represen-
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tational role of a signal: co-variation of the signal recorded with 
a behavioral event, and, mimicking (by microstimulation) of the 
candidate signal that should lead to a measurable perceptual or mo-
tor effect. In any case, spike activity fulfilled both these criteria in 
a number of examples described elsewhere (Parker and Newsome 
1998; Romo et al. 1998; Di Lorenzo et al. 2003; Cohen and News-
ome 2004). Another feature of spiking neurons is the variability of 
their responses elicited by the same input over many trials. For ex-
ample, fluctuations in the mean spike count over a fixed time and ir-
regularities of inter-spike intervals of a single neuron in response to 
identical stimulations may be introduced by non-linear integration 
during spike generation or synaptic transmission at all levels of a 
processing pathway. However, the variability in the responses is not 
only signaling noise, it can be also a source of information. Never-
theless, although individual neurons reliably fire action potentials, 
information is sorted and processed by neural networks capable of 
rapidly handling large amounts of information. The nervous sys-
tem probably has developed structural and functional features that 
exploit the temporal variation of action potentials to represent in-
formation, mediating perceptual synthesis and adaptive sensorimo-
tor integration (Friston 1997). An intuitive question at this point is, 

Figure 1. Diversity and complexity of neuronal electrical behavior (blue) in re-
sponse to different injected current steps (green). Here is shown a type of spike-
alphabet emitted by neurons that afford various ways of firing patterns that are 
constrained by the neuronal biophysical properties. (Reproduced with permission 
from www.izhikevich.com.)
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how are these spikes used by the brain to code information?
Representational signals can be carried by neurons using a num-

ber of potential codes. Thus a “neural code” could be understood as a 
system of symbols and rules by which information is carried (Paillard 
1983; Halpern 2000). For single neurons, these codes include the fir-
ing rate of the cell, which is the total number of spikes counted in an 
arbitrary time window, and the temporal structure of neuronal spike 
trains, where the exact time of every spike is informative (Fig. 2).  

 
 
 
 
 
 

 
 
For larger populations of neurons (Fig. 3), coordinated codes in 
volve the relationships among the activities of a number individual 
neurons, whereas independent codes involve the pooling of dis-
tributed signals from cell populations (Georgopoulos et al. 1986). 
Through measurements of the contents and functions of neuronal 
signals, these signals can be directly linked to the behavioral and 
cognitive processes they mediate (Parker and Newsome 1998; deC-
harms and Zador 2000; Erickson 2001). Our aim in this paper is to 
review some examples, where numerous temporal coding schemes 
are evidenced, tracing a spatial evolution of the transformation of 
the coding scheme at different levels in the brain, particularly at the 
neocortex stage in the visual system. This synthesis may help bring 

Figure 2. Predominant single neuron coding schemes. (a) By specific receptive 
field and modality through connectivity a given neuron sends a signal related to 
a particular message. (b) Differences in latency signaling the contrast changes of 
visual stimuli. (c ) A tuning curve is shown where a neuron responds preferentially 
to a particular stimulus attribute. (d) Local fast modulations in a spike train to code 
time-varying signals (top panel) or a static spatial stimulus (bottom panel). These 
fundamental modes of coding are not mutually exclusive and can be combined to 
form more complex coding schemes at the population level.
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out consistencies, which could shed some light on the functional 
significance of the current coding theories.

tHe rate vS tiMing conunDruM

Information in the brain is encoded by patterns of trains of action 
potentials generated by neural populations. These action potential 
patterns show specific topographic distributions across a neural cir-
cuit and temporal relations among active channels. In recent years, 
the debate in the literature revolves around the significance of tem-
poral coding vs. rate coding. However, this seems rather artificial 
since the brain has been shown to employ both rate coding and tem-
poral coding to varying degrees in different parts of the nervous 
system, depending on task demands and features of the stimulus 
perceived (Stein et al. 2005). Then we should keep in mind that 
these are not mutually exclusive coding proposals (Hubel and Wi-
esel 1959; Mountcastle 1980; Reich et al. 2000; Salinas et al. 2000; 
Moore et al. 2001; Hess et al. 2003). Neuroscientists often describe 
the behavior of spiking neurons in terms of firing rate of individual 
cells, where spike events are integrated over a fixed time window, 
and where only the mean frequency of spikes matters (Aertsen and 
Braitenberg 1996). Correspondingly, the mean firing rate is not a 
well-defined property of a sequence of events, assuming that spik-
ing neurons generate sequences of pulses that differ from each other 

Figure 3. An ensemble temporal code. Spike trains from functionally connected 
neurons were pooled to create a peri-stimulus time histogram (PSTH) in response 
to the peaks of one of two oscillating signals.
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only with respect to their relative occurrence times. From this rea-
soning emerges the proposal of an extra channel of information em-
bedded in the precise temporal structure of spike trains, exploited by 
the brain as a temporal code. Temporal coding, in its broadest sense, 
refers to two types of problems. First, it assigns importance to the 
precise timing and coordination of spikes for feature information 
coding, expanding the brain possibilities of stimulus representation. 
Second, the brain could represent time itself as a variable, solving 
sensorimotor problems such as interval duration and motion dis-
crimination, as well as complex forms of sensory processing, from 
speech recognition to bimanual coordination to playing the piano 
(Mauk and Buonomano 2004). This distinction between spike tim-
ing and time representation will be crucial in the following sections, 
where we will deal only with the first form of temporal coding.

SpiKe tiMe integration or tHe queuing for tHe  
“Meaning”

Let us contrast the observation of periodicity with the notion of rate 
coding. In this way, instantaneous firing rate is the probability that 
a spike will occur in a small time window; if we make the window 
larger the probability will be larger, and we will not be able to dis-
cern the periodicity of the firing given the poor resolution of the 
kernel. However, by using short enough time windows, a temporal 
structure of the response can be revealed, and it is possible to in-
vestigate the spatio-temporal clues in the signal itself (Dayan and 
Abbott 2001). On the other hand, with large time windows the tem-
poral structures become secondary, and the number of spikes in the 
window is what matters for carrying information. Consequently, the 
problem of rate versus temporal coding in this scheme is a simple 
problem of demonstrating which window of integration can carry 
the behaviorally relevant information in a robust fashion.

In a recent study in which psychophysical and neurophysi-
ological experiments were conducted in monkeys trained in a vi-
brotactile discrimination task, researchers propose a minimal time 
window during which the firing rate was successfully integrated in 
the primary somatosensory cortex. They report a 250-ms weighted 
window that covaries with the monkey psychophysical performance 
(Luna et al. 2005). From the decoding perspective, the read-out rule 
using a simple firing rate from independent neurons, even with an 
optimized kernel, yields questionable and probably overestimated 
results, because the brain uses multiple neurons instead of many 
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trials. The reasoning is as follows: if we take into account the laten-
cies of information processing in the same system under the same 
vibrotactile stimuli, we have neurons in the primary somatosensory 
cortex (SI) that respond with a latency of 20.2 ± 4.5 ms (mean ± 
SEM), those in the secondary somatosensory cortex (SII) with a 
latency of 29.9 ± 7.4 ms, and those in the medial premotor cortex 
(MPC) with a latency of 67 ± 13 ms (Hernandez et al. 2002). Given 
the limited trial-based firing rates discussed above, a weak point 
with this measure becomes apparent when considering (a) that the 
time windows involved are typically quite long, 250-500 ms, and 
(b) that the time needed for several spikes to accumulate in order 
to estimate the firing rate is usually longer than the time needed for 
most perceptual or behavioral processes (Guyonneau et al. 2004). 
These considerations are in conflict with the idea of a firing rate code 
measured across trials using independent pooled neurons. For ex-
ample, it has been shown that neurons in the infero-temporal cortex 
can be highly selective for stimuli such as faces, can respond only 
80-100 ms after stimulus onset (Rolls 2000), and that the primate 
visual system can analyze complex natural scenes in only 100-150 
ms (Thorpe et al. 1996). The studies above suggest that information 
arrives with different jitters, even in the same area, by recurrent 
and parallel connections (Schmolesky et al. 1998), and that neurons 
seem to weight the first spikes of a train and use shorter integration 
times than the typical time windows used to estimate firing rates. In 
this respect, the cortex likely deals with this problem by estimating 
the rate or timing of coordinated spikes using several active neurons 
and their jitter times, instead of several independent trials.

variabilitY of neuronal reSponSeS

Deciphering the neural code requires an understanding of the bio-
physical constraints, which limit the temporal precision or reliabil-
ity of neuronal spike trains (Softky and Koch 1993; Steinmetz et al. 
2001). The neuronal response variability has been characterized by 
a count and interval statistics. Two measures of spiking responses 
are commonly employed: the interspike-interval distribution and 
the spike-count distribution (Dayan and Abbott 2001). In numerous 
studies, especially in the visual systems of vertebrates, the spike-
count variability has been quantified by the Fano factor (FF = vari-
ance/mean ratio of the spike counts), and as a standard quantification 
of the interspike-interval (ISI) variability, the coefficient of varia-
tion (CV = standard deviation/mean ratio of the interspike intervals) 
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is calculated (Tolhurst et al. 1983; Softky and Koch 1993; Vogel et 
al. 2005). While the FF reflects the response reliability for multiple 
stimulus presentations, the variability of an ongoing neuronal re-
sponse is expressed by the CV. Thus, the relation between these two 
measures may help characterize a neuron’s spiking response (Wer-
ner and Mountcastle 1963; Stevens and Zador 1998). The neuronal 
spike train variability often resembles the variability expected from 
a Poisson process, in which each event occurs independently of the 
occurrence of other events. For a Poisson process, the variance of 
the number of events counted in a set of equal time intervals is 
equal to the mean count across the intervals. For cortical neuronal 
responses, when an identical visual stimulus is presented for several 
repetitions, the variance of the neural spike count has been found to 
exceed the mean spike count by a ratio of 1–1.5 wherever in the cor-
tex has been measured, approaching the Poisson model (Softky and 
Koch 1993; Shadlen and Newsome 1994; Lee et al. 1998; Shadlen 
and Newsome 1998). Equally, in a hypothetical Poisson event train, 
the time intervals between successive events are independent and 
exponentially distributed. Note that the irregularity of the distribu-
tion of counts in a particular time interval derives directly from the 
irregularity of spike timing. The interspike interval distribution for 
many cortical neurons can be fitted by an exponential probability 
density function, but the CV values are only valid if the response 
rate is a constant (Shadlen and Newsome 1998; Christodoulou and 
Bugmann 2001). In certain cases, the FF and the CV are related by 
the equation: FF = CV2. The main requirement is that every ISI in 
a spike train be statistically independent of every other ISI, show-
ing that the spike train follows a Poisson behavior (Stevens and 
Zador 1998). But under these assumptions, it is possible that spike 
reliability, precise latency, and high speed rate modulation in the 
overall neuronal behavior were not properly evaluated when using 
a Poisson model. One line of reasoning is that a significant source 
of variability under identical conditions is encoding hidden con-
textual variables not measured by the experimenter. This internal 
ongoing activity has been shown to contribute at least in part to the 
variability commonly reported in cortical responses, as Arieli et al. 
suggested using optical recordings on the primary visual cortex of 
anesthetized cats. Inferring lack of precision at the cortical level of 
processing from these rough measures could be tricky, given the 
capacity of the cortex to manage multidimensional variables.
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Other experimental approaches revealed that in vitro experi-
ments the FF values were consistently lower than those observed 
in vivo, reinforcing the previous observations that isolated inputs 
cannot account for the high variability observed in vivo (Stevens 
and Zador 1998; Knoblauch and Palm 2005). In an in vitro study the 
temporal pattern of the response of pyramidal neurons to injected 
current was found to be unreliable when the injected current was 
constant, but highly reliable when the input current fluctuated and 
contained high-frequency components. This study demonstrated 
explicitly the difference between the irregularity of the spike pat-
tern as opposed to the reliability or accuracy of spike timing, and 
it also highlighted the fact that natural stimuli are noisy and con-
tain sharp transitions (Mainen and Sejnowski 1995). According to 
this view, the response variability of cortical neurons seems to be 
a property of synaptic connections, both inhibitory and excitatory, 
rather than the neurons themselves (Tolhurst et al. 1983; Holt et 
al. 1996; Movshon 2000). And given that the response variability 
increases from low values in primary neural processing stages, to 
greater values in higher processing structures, one of the remark-
able sources of central and widespread variability seems to come 
from intracortical connections, pointing again to the role of the na-
ture and topology of synaptic inputs on the capacity of processing 
variables (Holt et al. 1996; Kara et al. 2000; Movshon 2000). One 
example of this was the study by Kara et al. (2000) in which they 
recorded simultaneously from the retina, LGN and cortex of anes-
thetized cats in response to a drifting sine-grating stimulus. They 
found a generalized low variability and a progressive increase from 
retina to cortex, with FF mean values of 0.15 for retinal ganglion 
cells, FF = 0.32 for LGN cells and FF = 0.55 for cortical neurons.

It is important to note that these two estimates of variability 
suffer from a possible drawback: when measuring variability over 
time, it is conceivable that the outcome is a misleading picture of 
neuronal variability. Comparing the magnitude of variability along 
successive stages in a sensory pathway might be problematic since 
there is evidence that the observed variability could be caused by 
internal states of the brain related to attention, expectation, motiva-
tion, or to other percepts not correlated with the ongoing variable 
(Abeles et al. 1995; Kenet et al. 2003; Ronacher et al. 2004; Knob-
lauch and Palm 2005). These internal states could change on a rela-
tively fine time scale (tens to hundreds of milliseconds) and could 
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play an important role in cortical function (Shadlen and Newsome 
1998; Kenet et al. 2003).

tHe Signal in tHe quoruM

The problem of computation resolution can be overcome at the 
level of populations, such that the population rate of an ensemble 
of neurons can be estimated on a time scale even shorter than the 
interspike intervals of the individual neurons (Knight 1972; Sakurai 
1996). The output of an ensemble can be described by an instanta-
neous population rate, estimated by the number of spikes emitted 
by the entire ensemble in small time intervals divided by the num-
ber of neurons (Rieke 1997; Dayan and Abbott 2001). Using this 
measure, recent studies in the human somatosensory system have 
demonstrated that the relative timing of the first spikes in individual 
units of ensembles of tactile afferents from the fingertip conveys 
sufficient information to discriminate four directions of fingertip 
force and three different shapes of the surfaces contacting the tip. 
The information is available more promptly than would be possible 
by the fastest rate code and quickly enough to account for the speed 
observed in natural object manipulations (Johansson and Birznieks 
2004). A code based on the relative timing of first spikes in neu-
ronal ensembles has also been discussed and analyzed theoretically 
in relation to fast object categorization in central vision (Thorpe et 
al. 2001). However, given that it is difficult to access hierarchical 
latencies in cortical areas, researchers have used averaged neuronal 
responses in order to obtain meaningful signals correlated with the 
variable of interest.

On the other hand, recent studies have revealed that the tim-
ing of individual spikes can represent with remarkable accuracy the 
time structure of rapidly varying stimuli, such as movement within 
a visual scene (Rieke 1997), or the coding of naturalistic sounds 
in central areas of birds (Wright et al. 2002). How should we rep-
resent a spike train in order to visualize the neuron’s behavior or 
to analyze its role in neural computation? To answer this question, 
Panzeri and co-workers varied the resolution at which the spike 
times were binned, and computed the average mutual information 
across stimuli (whisker deflection) as a function of bin size in the 
rat somatosensory cortex. They found that information increases as 
bin size is decreased, and the shortest bin that could be robustly 
estimated was 2.5 ms (Panzeri et al. 2003). This finding suggests 
that the quantification of the information depends on the temporal 
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structure of the spike train evoked. The critical factor was that the 
relative latency between the response to the principal whisker and 
that to surrounding whiskers is preserved in the trial-to-trial vari-
ability in first spike time. Therefore small bins under this condition 
can extract a precision profile from firing rates, based on population 
of neurons that can account for stimulus discriminability. The same 
group noted that the total information present when the spikes were 
considered individually exceeded 100% of that present in the full 
spike train, indicating that spikes subsequent to the first one were 
partly redundant. This observation emphasizes the significance of 
the timing of the first spike, which contributes to the coding of a 
spatial, behaviorally relevant feature of peripheral events detected 
by whisker deflections. Moreover, for each time step in the 0–40 ms 
interval, the first spike accounted for essentially all of the informa-
tion in firing rate modulation (Panzeri et al. 2001). The same was 
true for neurons recorded in the secondary auditory cortical field of 
anesthetized cats in response to noise bursts presented from differ-
ent azimuthal locations. It was found that the proportion of infor-
mation about azimuthal source location transmitted by first spike 
latencies averaged 89% of that of full spike patterns (Furukawa and 
Middlebrooks 2002).

Although this is only a first approximation, the inevitable con-
clusion is that small numbers of spikes and more importantly their 
time of occurrence are capable of contributing to robust stimulus 
representation using assemblies of functionally correlated neurons. 
Note that this type of population coding has been reported only in 
the initial nodes of the sensory hierarchy.

TimiNG iN seNsory sysTems: basiC 
floor plaN

The search for representations in the brain begins with visualizing 
the brain as acquiring information about the organism’s own body 
and its environment that can, in turn, be used to guide behavior. 
Probably the first approximation that followed the same line of rea-
soning dates back to the classic early work of Lord Edgar C. Adrian, 
who performed electrical recordings in numerous sensory systems 
and even explored muscle properties. Adrian put forward three 
main principles that helped to develop the current ideas in neural 
coding. The first observation established that individual neurons 
generate stereotyped all-or-none responses that propagate along the 
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cell axon; the phenomenon is highly conserved among species. This 
means that information travels and can be read only through the 
arrival of electrical signals. The next important concept relates to 
adaptation, or desensitization, i.e. the decline in neural responses as 
function of time when a constant energy is applied. This principle 
was demonstrated when the mean firing rate of the muscle stretch 
receptor decreased as a function of elapsed time when a constant 
weight load was applied to it. The third contribution comes from 
the recognition that the variation in frequency of the discharges 
carried information about stimulus intensity (Adrian 1928). These 
ideas served as a basis for subsequent research on sensory neurons 
(Galambos and Davis 1948; Hubel and Wiesel 1959; Werner and 
Mountcastle 1963). Evidence for stimulus-related spike timing 
patterns exists in nearly every sensory modality. Such information 
can potentially be utilized for representation of stimulus qualities, 
localization of sources, and perceptual grouping. In what follows, 
we briefly review spike-time coding schemes and possible driving 
signals in various stages of the visual processing pathway.

viSual SYSteM

A visual scene is conveyed first at the level of the retina, which 
performs a significant amount of processing. The visual signal is 
integrated from a neural population of 108 photoreceptors into just 
106 ganglion cells (the output of the retina) forming optic nerve 
fibers that transmit in parallel to subsequent circuits (Meister and 
Berry 1999). The retina has the salient property of highly reliable 
responses that vary with the effective contrast. For example, Berry 
and co-workers (1997) observed that in both salamander and rabbit 
the ganglion cells respond to Gaussian flicker intensity at discrete 
periods of firing, with a jitter as low as 4.4 ms at the highest contrast 
(35%) rising to 14 ms at the lowest (2.3%). They also noted that 
many ganglion cells, when driven by a broad mixture of fast and 
slow stimulus waveforms, respond to a small subset of stimulus 
features with high precision in the first few spikes and simply do 
not respond to the others (Berry et al. 1997). A central assumption is 
that the retinal code can be formulated by describing the responses 
of individual ganglion cells based on their discharge rate; however, 
retinal ganglion cells engage in significant patterns of concerted 
activity that cannot be derived from any single-neuron descrip-
tion. This coordinated activity has been suggested to be an extra 
channel of information (Castelo-Branco et al. 1998; Levine et al. 
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2002). Thus, it has been recognized that neighboring ganglion cells 
in vertebrate retina typically show an increased probability of fir-
ing together within some relatively narrow temporal window, much 
greater than expected by chance (DeVries 1999; Levine et al. 2002). 
These synchronized retinal spikes have been postulated to arise via 
connectional mechanisms. One such mechanism is gap junction 
coupling, in which synchronous spikes would be a by-product of 
lateral signal shared by electrical coupling among ganglion cells (< 
1 ms jitter). Synchronous spikes have also been postulated to arise 
from common-source inputs to retinal ganglion cells coming from 
electrical coupling with amacrine connections having overlapping 
receptive fields, and thus coding for stimulus location in the over-
lapping area (10-50 ms jitter). Finally, on a broad timescale (40–100 
ms), common inputs from photoreceptors transmitted to the gan-
glion cell layer via chemical synapses are another source of activ-
ity synchronization (Brivanlou et al. 1998; DeVries 1999). Thus, 
the concerted-firing strategy is most effective when firing rates are 
low, so that coincidences due to chance are relatively infrequent. A 
recent report explores correlated firing among neighboring, direc-
tionally selective, ganglion cells as a function of stationary flashes 
versus moving spots and extended bars. The results showed that 
movement of a spot tends to increase the correlation in firing over 
that produced by flashes, and movement of an extended contour 
produces more correlated firing than small moving spots, empha-
sizing the importance of the stimulus feature (Amthor et al. 2005). 
On the other hand, Nirenberg and colleagues postulated that reti-
nal synchronization, although it occurs, may be unimportant as an 
encoding mechanism, because more than 90% of the transmitted 
information about natural stimuli could be obtained from ganglion 
cells of the mouse retina while ignoring their correlated firing, indi-
cating that ganglion cells act largely independently to encode infor-
mation (Nirenberg et al. 2001).

However, these studies on synchrony or reliability of neuronal 
firing were designed to study the local processing of information in-
side the retina. In general, this research did not focus on the interac-
tions with subsequent relay structures and their impact on encoding 
mechanisms dependent on coincidence detection or cross-correla-
tion in neural activity. In summary, retinal ganglion cells respond in 
a precise, temporal fashion to some properties of the visual stimuli, 
modulating their firing rates with a speed of change as low as 1 ms. 
Nevertheless, it seems likely that synchronization among these cells 
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can enhance the temporal integration at the next level of processing. 
For example, it is well known that 5–10% of the input to the lateral 
geniculate relay cells derives from the retina, which is the driving 
input; the rest of the input is modulatory and derives from local in-
hibitory inputs, descending inputs from layer 6 of the visual cortex, 
and ascending inputs from the brainstem. This input controls many 
features of retinogeniculate transmission (Sherman and Guillery 
2002). Researchers have examined the role that spike timing of reti-
nal afferents plays in driving thalamic and cortical responses, using 
multiple extracellular recordings. This arrangement allows for a de-
tailed comparison of the lateral geniculate nucleus (LGN) response 
and its retinal input, and it makes the relay neuron of the LGN an 
important model system in which to study the regulation of sensory 
transmission from the periphery to the cortex (Victor 1999).

An interesting property of timed visual responses in the retina 
is the paired-spike enhancement. For a pair of retinal spikes from 
a single ganglion cell with a very short inter-spike interval (ISI), 
i.e. within less than 30 ms of each other, in vivo experiments have 
demonstrated that a second spike in the train is about 12 times more 
likely than the first to produce a LGN spike; at ISIs greater than 30 
ms, second retinal spike are equal to the first spike in their prob-
ability of producing an LGN action potential (Usrey et al. 1998; 
Levine and Cleland 2001). Thus, it is possible that small groups 
of correlated ganglion cells sending convergent afferents to a sin-
gle LGN neuron may mimic the paired-spike enhancement effect, 
employing temporal spike summation. Information encoded in the 
high firing rate of an individual retinal ganglion cell becomes dis-
tributed among several LGN neurons that fire synchronously. Then, 
synchrony according to anatomical divergence in the LGN is both 
strong and fast: up to 30% of the spikes from LGN cells that receive 
input from the same retinal ganglion cell can occur within less than 
1 ms of each other, supporting the notion that LGN synchrony plays 
a major role in visual processing. In other words, there is a partial 
transformation of a single-cell rate code to a population temporal 
code.

The LGN is the main source of afferent input to the primary 
visual cortex, where single, simple cells in layer 4 receive con-
vergent inputs from a very specific pool of at least 30 LGN cells. 
This convergence can be used by cortical neurons to identify pre-
cise temporal correlations between thalamic inputs, and therefore, 
it is a candidate mechanism to transmit information from one level 
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to the next in the hierarchy (Reid 2001; Kara and Reid 2003). At 
the divergence side, a single, magnocellular thalamic cell can tar-
get as many as 400 cortical cells. Because of this, one is driven to 
suspect that the neural code for vision changes dramatically at this 
stage (Lestienne 2001). This interplay of anatomy and physiology 
acts not only to reinforce the pathway from the periphery to the 
cortex, but also to provide the cortex with more information about 
the visual environment (Dan et al. 1998; Rossi and Paradiso 1999). 
Simultaneous recordings in the LGN and the cortex have in fact 
shown that synchronous spikes from the LGN act synergistically in 
driving their cortical targets, and the effect decreases with ISIs up to 
15 ms (Usrey et al. 2000). Such coincidence-detection mechanisms 
in the postsynaptic cortical cell may provide a means for reading 
out the population temporal code found in the LGN. This syner-
gistic theory has recently been supported by means of intracellular 
measurements in an intact brain, pointing out that a group of just 30 
synchronized inputs will drive the activity of one cortical neuron in 
layer four of V1 (Bruno and Sakmann 2006).

Theories of temporal coding through visual cortical networks 
are more diverse, given that visual areas are extensively intercon-
nected by pathway convergence and divergence, as well as by lat-
eral and feedback projections. Visual areas consist of a spatially 
distributed, temporally overlapped, and hierarchically organized 
network that processes information in parallel, which makes it dif-
ficult to crack their intrinsic dynamics (Knudsen et al. 1987; Felle-
man and Van Essen 1991; Schmolesky et al. 1998). The existence 
of reciprocal connections between cortical areas suggests that the 
most common informational transaction may be the recursive ex-
change of information between areas, rather than its unidirectional 
transfer from one area to another (Bressler 1996). However, the 
possibility of spatiotemporal spike coding on the basis of spike tim-
ing, synchronization, and mutual correlation of spikes from differ-
ent neurons is currently being explored (Eckhorn 1994; Salinas and 
Sejnowski 2001).

Cortical neurons can temporally represent stimulus properties 
by means of two broad strategies: stimulus-driven temporal correla-
tions (when coding; Fig. 2d top) and stimulus-triggering of endog-
enous temporal-response patterns (what is encoding; Fig. 2d bot-
tom). Temporal coding of a signal is characterized by a one-to-one 
correspondence between the time of occurrence of a sensory event 
and the time of occurrence of the corresponding neural influx or 
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phase-locked response (Merchant et al. 2004), whereas temporal 
encoding of a signal corresponds to situations in which information 
about static or dynamic signals is encoded in the temporal pattern of 
spikes (temporal encryption) without the spikes being tied to chang-
es in the signal itself (Lestienne 2001). The former has been evalu-
ated for the reliability of the average spike rate of a group of cortical 
neurons, representing a time-varying signal like the critical flicker 
frequency, assessing the limits of the temporal fidelity of cortical 
spike rate signals (Wells et al. 2001). On the other hand, encoding is 
well exemplified, given that activated neuronal groups possess the 
intrinsic property to oscillate; these oscillations constitute rhythmic 
modulations in neuronal excitability that affects both the likelihood 
of spike output and the sensitivity to synaptic input. Thus, rhyth-
mic excitability peaks constitute rhythmically reoccurring temporal 
windows for communication. Only coherently oscillating (or phase-
locked) neuronal groups can communicate effectively, because their 
communication windows for input and for output are open at the 
same times. (Buzsaki and Draguhn 2004; Fries 2005).

In the early stages of visual processing, objects and scenes are 
represented by neurons with small visual receptive fields. Each 
neuron provides information about local features of a scene, but to 
describe a scene, information must be integrated across the visual 
field and combined according to specific attributes (Shadlen and 
Movshon 1999). One theory has proposed that perceptual grouping 
and figure ground discriminations are represented dynamically by 
the formation of cell assemblies (Fig. 4), which are themselves

 
 
 
 
 
 
 
 
 
 
 
 
 
defined by the fast correlations or possibly synchronization of dis-
tributed neuronal activities on a millisecond time scale (von der 

Figure 4. Object-background segmentation by time-dependent correlation of mul-
tiple neurons. One of two superposed objects was discriminated by three neurons 
(Nx, Ny and Nz) sensitive to vertical contours falling within their receptive fields. 
These three neurons shows coupled spiking activity binding the object properties, 
while their firing rates remain constant.
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Malsburg 1981; Altmann et al. 1986). This spiking behavior usu-
ally coincides with a large-scale oscillatory background, but it does 
not depend of its presence (Eckhorn 1994; Roy et al. 2001). Many 
investigators believe that neuronal synchronization is critical for 
transmitting sensory information and have suggested that a major 
function of cortical neurons is to detect coincident events among 
their presynaptic inputs (Abeles 1991; Kreiter 2001). Neuronal 
synchronization is present in many brain regions during sensory 
stimulation, but its role in sensory processing is controversial (Gray 
1999; Shadlen and Movshon 1999).

Cross-correlation studies performed in cat visual cortex 
have shown that neurons in different cortical areas of the same 
hemisphere or in corresponding areas of opposite hemispheres tend 
to synchronize their activities. Cross-correlation and auto-correlation 
functions from simultaneous recordings in areas 17 (V1) and 18 
(V2) of anaesthetized cats responding to a stationary or moving 
stimulus of variable frequency, showed firing patterns phase-locked 
to the frequency of the ongoing stimuli at different recording sites 
and between them. Synchronizations were dominated by a cortical 
oscillating mechanism operating in the 30–60 Hz frequency range, 
activated preferentially with moving stimuli, and more frequent for 
cells in area 18 than in area 17. (Castelo-Branco et al. 1998; Rager 
and Singer 1998). Accordingly, paired recordings in V1 and V2 of 
paralyzed and anesthetized macaque monkeys in response to moving 
and flashed bars, have demonstrated that synchronization also 
occurs between the two areas, but near zero phase-lag correlations 
were rare (Nowak et al. 1999). In alert animals, millisecond 
synchronizations and gamma-band activity (20-70 Hz) in the striate 
cortex was strongly dependent on visual stimulation and is largely 
absent during spontaneous activity. In addition, the frequency of 
gamma-band activity also reflected stimulus properties, with drifting 
gratings evoking higher-frequency oscillations than stationary 
gratings (Livingstone 1996; Friedman-Hill et al. 2000; Maldonado 
et al. 2000). Another set of studies have stressed the importance of 
highly reproducible spike patterns and oscillations in extrastriate 
visual cortical areas of awake monkeys, where information about 
stimulus features is computed to bring out a particular percept. For 
example, this is the case for the medial temporal area (MT), a region 
that plays a major role in processing motion information and is at 
least five synaptic stages away from the sensory input (Salzman et 
al. 1990). When MT neurons were studied with time varying stimuli, 
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80% of cells were capable of responding with jitter from 2 ms to 10 
ms, and about 62% of the cells showed an activity peak in the 20-60 
Hz frequency band. These studies have confirmed that extrastriate 
neurons in alert primates can encode the fine temporal structure of 
visual stimuli (Bair et al. 1994; Bair and Koch 1996; Buracas et al. 
1998). This approach has been used to assess the reproducibility of 
spike trains in response to a more naturalistic input, which provides 
strong evidence that visual stimuli can synchronize neurons on the 
time scale of several milliseconds.

Now we turn to the relationship between correlated firing and 
a specific function. Perhaps the strongest evidence that oscilla-
tions and synchrony in the gamma-band are involved in a specific 
cognitive process comes from V4 recordings on awake behaving 
monkeys, in which the visual input is kept fixed, while the monkey 
attention shifts to different parts of the visual scene. Neurons acti-
vated by the attended stimulus showed increased gamma-frequency 
(35-90 Hz) synchronization but reduced low-frequency (17 Hz) 
synchronization compared with neurons at nearby V4 sites acti-
vated by distracters (Fries et al. 2001). It should be noted that that 
serial and parallel mechanisms of response enhancement and neural 
synchrony work together to identify objects in a scene (Bichot et 
al. 2005). An interesting and representative case of synchronicity 
has been investigated on binocular rivalry; that is, when the images 
in the two eyes are incongruent and cannot be fused into a coher-
ent percept, only signals from one of the two eyes are perceived, 
whereas those from the other eye are suppressed. The search for 
neuronal correlates in the cat primary visual cortex has shown an 
increase in the synchrony of cells when the signals conveyed passed 
from being suppressed to being perceived (Fries et al. 1997). Re-
cently, it was reported that behavioral response times to a stimulus 
change can be predicted specifically by the degree of gamma-band 
synchronization among those neurons in monkey visual area V4 
that are activated by the behaviorally relevant stimulus, reflect-
ing an early neuronal correlate of efficient visuo-motor integration 
(Womelsdorf et al. 2006). The similarities in the properties of syn-
chronous oscillations in the monkey and cat suggest that this form 
of neuronal activity is a general property of mammalian striate cor-
tex. The above findings have been extended by the demonstration, 
based on gamma oscillation in humans, which only face perception 
induces a long-distance pattern of synchronization corresponding to 
the moment of perception itself and to the ensuing motor response. 
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A period of strong de-synchronization marks the transition between 
the moment of perception and the motor response (Rodriguez et al. 
1999).

The results reviewed so far provide correlative evidence for a 
role of response synchronization in neuronal processing, but they 
permit no stringent inferences as to whether the nervous system 
ascribes meaning to the precise temporal correlations among dis-
charges. An attractive feature of this temporal coding strategy is 
that ensembles can be highly dynamic, and different stimuli will 
create broad coherent neuronal groupings that dissolve and settle 
into new configurations (Langheim et al. 2006). Thus, in the visual 
system even entirely novel stimuli could be represented by the co-
herent activity of a particular ensemble. Finally, as we mention ear-
ly, all presynaptic action potentials terminate at postsynaptic neu-
rons, where they initiate postsynaptic currents that are integrated 
collectively to trigger or inhibit new spikes. But, who reads out the 
information? Or where are the representations implemented? The 
first stage of a postsynaptic cell is the dendritic arbor; on average 
each dendrite of a postsynaptic cell receives about 6000 presynaptic 
inputs. Each synapse selects a unique mélange of features of the 
presynaptic spikes and transmits only a specific subset of the infor-
mation contained in the entire train. Different aspects of the same 
train are read out by different target cells; thus, although the spikes 
on one axon are identical events, their effects on a postsynaptic cell 
vary from spike to spike given the spatio-temporal dynamics of the 
dendritic field (Gerstner et al. 1997).

No study, to our knowledge, has directly addressed the potential 
of a dendritic field for representation. Nevertheless, a novel hypoth-
esis (Markram 2006) proposed that neural microcircuits construct 
multidimensional electrical objects on 3D co-ordinates of all den-
dritic segments from all neurons within a volume of brain tissue. In 
this theory, action potentials are used to produce voltage responses 
in dendrites in order to construct and maintain 3D electrical objects 
that span continuously across all dendritic segments in the neural 
volume. Synaptic properties are tuned to allow each neuron to con-
tribute a unique “electrical trait”, and the local recurrent circuitry is 
used to merge and integrate these “electrical traits” into meaning-
ful “electrical objects” that represent the stimulus. Also suggested 
was that 3D dendritic object formation is a generic capability of all 
neural microcircuits and that specialization of brain regions allows 
merging and integration of elementary electrical objects formed in 
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local microcircuits into more complex objects and eventually into 
complete scenes of the world. So, the transference of information 
from one node to the next compels minimization of the number of 
spikes used as we learn to transfer just the required information. We 
are thus led to a view of neural coding that is quite distinct from the 
classical picture of information processing based solely on action 
potential patterns.

CoNCludiNG remarKs

Much information about the world is embedded in time, and recent 
advances in neuroscience have revealed the major significance of 
temporal coding in the brain and its indispensable role in neural 
information processing. The distribution patterns of these tempo-
ral codes across the cortical surface and subcortical structures give 
an indication of how conserved is this representational mechanism, 
which may have evolved to optimize the properties of the network’s 
circuitry. The picture emerging from this review allows for the fol-
lowing conclusions.

First, temporal codes can be viewed in two different contexts: 
temporal neural discharges simply follow the temporal variations 
of the stimulus, and spike timing thus provides information about 
the occurrence of a change in the stimulus with certain accuracy 
(phase-locked coding). A different context is one in which temporal 
firing patterns do not result directly from the time-varying features 
of the stimulus. Rather, such patterns are a product of brain cir-
cuit dynamics (intrinsic encoding). This dichotomy may be a useful 
heuristic to identify critical variables driving each of the two func-
tional states. Second, response variability is a property of synaptic 
connections, not of neurons themselves (Movshon 2000). However, 
sparse activations are also capable of representing simultaneously 
the enormous complexity and variability of the natural environ-
ment, in properly configured neural networks. For example, indi-
vidual neurons in area MT of alert monkeys can discriminate better 
between stimuli with rich temporal structure than constant-motion 
stimuli that differ only in direction (Buracas et al. 1998). Third, us-
ing a simple rate coding and independent pooled neurons it has been 
shown that the time needed for several spikes to accumulate in order 
to estimate the firing rate is usually longer than what is needed for 
most perceptual or behavioral processes. From this, we stress the 
necessity of coupling simultaneous extracellular multiunit record-
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ings (output) with optical imaging techniques (input) in order to 
elucidate the true nervous system dynamics. Voltage-sensitive dyes 
(VSDs) insert into the plasma membrane and change their fluores-
cence intensity dependent on the potential across the lipid bilayer. 
Some VSDs has proven useful, allowing the spatiotemporal analysis 
of electrical signaling in dendrites (input). Extracellular multiunit 
recordings capture the suprathreshold activity of neurons, typically 
spikes at soma or along the axon (output). Fourth, correlated or near 
synchronous neuronal activity of the same assembly with a preci-
sion in the microsecond to millisecond range has been described as 
an independent channel of information flow. Experimental studies 
mentioned above indicate that large variations in correlations can be 
observed in the absence of simultaneous variations in mean firing 
rates. Rate-independent modulations in synchrony have been linked 
to changes in expectation, attention, response latency, and rivalry, 
all of which process and adjust the flow of information (Stuart et al. 
2005). These internal processes are likely to be modulated by top-
down feedback pathways that strongly shape the intrinsic dynamics 
of thalamocortical networks and constantly create predictions about 
forthcoming sensory events (Engel et al. 2001).

We can conclude that several mechanisms are available to corti-
cal neurons that allow them to generate and to respond to concerted 
activity as part of their everyday dynamics, highlighting the fact 
that information processing in the neuronal circuitry depends to a 
large extent on how signals are channeled through the brain, and 
how the relevant circuitry can be quickly adapted to the current sig-
nal processing for the semantics of representation. It seems very 
likely that all play a part, but in which circumstances and which 
combinations remains to be determined.
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